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Dynamic molecular devices capable of converting thermal,
chemical, or photochemical energy into motion are a focus of
considerable current interest, and a wide range of systems producing
longitudinal or rotational motion have recently been repotted.
Although bulk electrochemical actuators based on volume changes
associated with the redox process of conjugated polymers have been
extensively investigatetlattempts to synthesize moleculaicon-
jugated dynamic structures remain scarce. A first step in that
direction was recently reported by Marsella et al., who investigated
tetra[2,3-thienylene] as a basic unit for molecular actuation.

We now report that the covalent fixation of a photostimulable
group on two fixed points of an oligothiophene chain allows one
to produce conformational changes and thus reversible modifications
of the electronic properties of the-conjugated system.

As the photoactive driving group, we used the azobenzene
chromophore which can be reversibly switched between an extended
trans and a shorter cis configuratibn.

Figure 1. Optimized geometries for compourid Top, 1-SASt; bottom,
1 1-ASA-c.

The target compouni was synthesized by reacting the depro- ® ¢ t L A ¢ g
tected thiolate groups of bis-cyanoethylsulfanyl quaterthiophene
with bis{p-bromomethylazobenzeie. G ¢

The structure ofl was modelized by theoretical calculations t " & Gg & ® 92 G,._' t
based on the density functional methoBecke’s three parameter . '
gradient corrected functional (B3lyp) with a polarized 6-31G* basis
for all atoms was used to optimize the geometry and to compute
the electronic structure at the minima found. The geometries of ASA conformational transition of the 4T chain which redudgs
the two conformations of and that of models of its two constitutive 7.5 A. Calculations show that theans-azoSAS form (1-SASt)

Figure 2. Crystallographic structure df (hydrogens omitted).

parts, that is, 3,3-dimethylsulfanyl-quaterthiophen&€4T) and is more stable than its isomer containicig-azobenzenel(ASA-
para-dimethyl-azobenzendeAz), were analyzed independently. ¢) by 52.6 kJ/mol, while theSAS to ASA transition raises the
Examination of the various minimal energy conformationsMe# T HOMO level from—5.10 to—5.02 eV and decreases the HOMO

shows that the distance)(between the two sulfur atoms serving LUMO gap from 3.24 to 3.03 eV.
as anchoring points for the azo group decreases from 12.1 A for  Figure 2 shows the X-ray structure of a single crystal.ofhe

the syr-anti—syn conformation$AS to 10.8 AAA), 10.7 SSA, 4T and azo systems are quasi-planar and parallel, the 4T chain
10.3 AAS), and 7.5 A ASA). Comparison of these data with the  presents the expect@&hSconformation, and the 12.3 dvalue is
distances between the two methyl groups of trans and/ei&z in excellent agreement with the theoretically predicted one (12.1 A).
(12.1 and 8.6 A) shows that tf®@ASand ASA conformations are Figure 3 shows the aromatic region of & NMR spectrum of

the best fit for the trans and cis azo group, respectively. compoundl in CDCl; before and after irradiation with 360 nm

The optimized geometry df shows that with the trans azo group, monochromatic ligh?. The initial spectrum exhibits two anoma-
the 4T chain adopts 8ASconformation withd = 12.1 A (Figure lously shielded signals: a broadened singlet at 6.79 ppm assigned

1). Trans to cis isomerization of the azo group induce&A& to to the four benzenic protons at tbetho positions of the methylene
- - — group of azobenzene (Hand a doublet at 6.58 ppm corresponding
+ poupe Systmes Conjugle Lingaires, IMMO. to the two hydrogens at the 4nd 3’ positions of the median
§ Service Commun d'Analyses Spectroscopiques. thiophenes (9.
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Figure 3. Aromatic region of théH NMR spectrum of compound (9 x E /V vs. Ag/AgCI
10+ M) in CDCls. Before (top) and afte5 h of irradiation at 360 nm . . .
(bottom). Figure 4. Cyclic voltammogram ofl (5 x 1074 M in 0.1 M BwuNPRy/

CH.Clz; 100 mV s1). Before irradiation (dashed line) and aft2 h of

) . . irradiation at 360 nm (solid line).
The unusual upfield chemical shifts of these hydrogens are due ( )

to their location in the shielding cone of their respective facing parameters fot (PDF and CIF). This material is available free of charge
thiophenic or benzenic system. The spectrum recorded afterya the Internet at http:/pubs.acs.org.
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Supporting Information Available:  Synthetic procedure and (10) A control experiment op-dimethylazobenzene shows that the azo group

characterization of compourtd crystallographic data, tables of bond is electrochemically inert up 16-1.70 V versus Ag/AQCI.
distances and angles, positional parameters, and general displacement ~ JA029754Z
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